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SUMMARY 

This paper treats the mathematical derivation of a novel formulation of the Navier-Stokes equation for 
general non-orthogonal curvilinear co-ordinates. The covariant velocity components are solved in this FVM 
formulation, which leads to the pressure-velocity coupling becoming relatively easy to handle at the expense 
of a more complicated expression of the convective and diffusive fluxes. When a velocity component is solved 
at a point P, the neighbouring velocities are projected in the direction of the velocity component at the point 
P. Thus the base vectors are changed at the neighbouring points. This renders a simpler expression for the 
covariant derivatives. Neither the Cristoffel symbol nor its derivatives need be computed. This contributes to 
the accuracy of the formulation. The procedure of changing the base vectors affects only the convected 
velocity. The convecting term (dot product of velocity and area) is calculated without any change of the base 
vectors. The same is true for the operator on the covariant velocity in the diffusion term. 

It is shown that when using upwind differencing the use of projected velocities gives better results than 
when curvature effects are included in the source term. The discretized equations are written in a form which 
enables the use of the tridiagonal matrix algorithm (TDMA). The equations can be solved using either the 
SIMPLEC or the PIS0 procedure. 

Two examples of laminar flows are given. 
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1. INTRODUCTION 

Many applications, such as vehicle dynamics, turbomachinery and aerodynamics, have complex 
geometric configurations. It is essential when simulating flow for these types of configurations 
that boundary-fitted co-ordinates (where the co-ordinate lines follow the boundaries) are used. 

Much work has been done in developing and applying finite volume methods to complex 
geometries. In some of the work, general orthogonal co-ordinates have been used.'-3 The 
advantage of using orthogonal co-ordinates rather than non-orthogonal co-ordinates is that the 
equations become much simpler; the disadvantage is the reduced flexibility when generating the 
grid. 

Other researchers have used non-orthogonal co-ordinate systems. A choice has to be made 
when representing the velocity vector and some have chosen covariant velocity  component^,^-^ 
others ~on t rava r i an t~ -~  and still others physical velocity components." Using covariant velocity 
components means that the pressure-velocity coupling becomes relatively easy to handle at the 
expense of the more complicated expression of convective and diffusive fluxes. For contravariant 
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and physical velocity components the problems are reversed. Covariant velocity components 
have been chosen in this work. 

The approach taken here is to set up a local rectilinear co-ordinate system where the co- 
ordinate axis, in the direction of the (v ,  ),-velocity component, is kept constant in the neigh- 
bourhood of point P. This means that most of the terms due to the curvature/divergence and non- 
orthogonality of the grid vanish. The procedure of keeping the co-ordinate axis constant 
(i.e. gi =constant) in the immediate vicinity of point P affects the convected velocity only. The 
convecting velocity (convection, i.e. dot product of the velocity vector and the area vector) is 
calculazwithout any change of the base vectors. This is also the case for the diffusion term. 

This approach has been previously adopted by Karki’ and partly by Malin et d4 In neither of 
these works was the mathematical derivation shown. 

The code here is applied to two laminar test cases: uniform flow across a polar grid and the flow 
in an expanding channel. 

2. DERIVATION OF THE DISCRETIZED EQUATIONS 

The steady incompressible momentum equation can be written in general co-ordinates, using 
covariant components, as1 

where g j k  denotes the contravariant components of the metric tensor. The convention that 
subscripts (i, j ,  k )  denote covariant components and superscripts (i, j ,  k )  denote contravariant 
components is used throughout the paper. Covariant components are chosen because this gives 
the simplest expression of the pressure gradient, which means that the velocity-pressure coupling 
becomes relatively easy to handle. 

The coma notation (see equation (1)) is used for denoting the covariant derivative, i.e.” 

where { ! j }  denotes the Cristoffel symbol of the second kind. The second term on the RHS of 
equation (2) is due to the covariant base vectors gi not being constant, i.e. the grid lines curve 
and/or converge/diverge (the gi are parallel with the grid lines). This can be shown by rewriting 
the second term in equation (2) as13,14 

which, together with equation (2), gives 

The LHS of equation (1) can, by using the continuity equation 

V k , k  = 0, 

be cast in conservative form so that 
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The k-superscript was lowered by using the relation between covariant and contravariant 
components' 

U k  = gjkvj. 

Multiplication of equation (1) by g' and integration of equation (l), using equation (4), over a 
control volume (the bounded surface of which is denoted by S) gives (see Appendix) 

( 5 )  
P s  '1 Jsgjk(ViU,- VUi,j)nkgidS + - pnig'dS = 0, 

where nk denotes the normal unit vector of the area S. The curvature effects are inherent in 
equation (5) in two ways: the covariant derivative (see equation (3)) in the diffusion term and the 
change of the base vectors g' over the area S. 

If we change the base vectors (gi)nb (nb = neighbours) in the immediate surroundings of point P 
so that they are parallel with (gi)p (see Figure 1 and Appendix), we can replace the covariant 
derivative (vi, j) in equation ( 5 )  with the usual derivative (av,/axj) (see equation (3)) and we can 
cancel the base vectors (g'). Note that the base vector is constant over a velocity control volume in 
the second integral (see Figure 1). Equation (5 )  then gives 

It should be stressed that when the procedure of changing the base vectors is carried out, this 
affects the v,-velocity (in equation ( 5 ) )  only, i.e. the convect4 velocity. The convecting - velocity, 
which appears in the (dot) product 

g j k  vjnk = vknk = v*n, (74  
is calculated without any change of the base vectors; the same is true for the product 

in the diffusion term. 

- 
Figure 1. The grid (see Appendix). The dashed arrows show the velocity vectors projected on PE, which are neighbours 

of (ul Ip (i.e. (4 )El (0; hv, (4 )N and (4 )s) 



5 34 L. DAVIDSON AND P. HEDBERG 

Equation (6) can now be discretized using the control volume formulation described in 
Reference 15. For the c,-equation the discretized equation may be written 

where b is the source containing the pressure gradient and the part of the diffusion terms which 
contains the cross derivative. The prime denotes velocity parallel to the (o,),-velocity and is 
calculated as 

(9) 

The u 2 -  and c,-equations are discretized in the same way. The a,-coefficient in equation (8), for 
instance, contains convective contributions such as (v - A), and diffusive contributions such as 
v(A.V),  (see equations (7)), where A, denotes the vector area of the east face of the control 
volume. 

A discretized equation similar to equation (8) was used by Malin et aL4 and Karki.' The 
derivation leading to equation (8) was, however, not shown by these authors. 

To make it possible to solve the velocities using the usual TDM algorithm, equation (8) is 
rewritten so that (as was done in Reference 5) 

)nb = vnb ' =(VJgj)nb * k l ) P  = (gkjck g j )  ' (g 1 )P. 

where the source term b,,,, now contains 

The equations are solved using the SIMPLEC algorithm16 or the PIS0  algorithm." The four 
main features are: staggered grids for the velocities; formulation of the difference equations in 
implicit, conservative form using hybrid upwind/central differencing; rewriting of the continuity 
equation as an equation (two equations in the case of PISO) for the pressure correction; and 
iterative solving of the equations using TDMA. 

3. ADVANTAGES OF THE FORMULATION 

In most studies of deriving discretized equations for flow in complex geometries, the terms due to 
curvature/divergence and non-orthogonality of the grid have been included using Christoffel 
symbols and metric tensors. Since the number of these terms is rather large, it is very cumbersome 
and may also be inaccurate (there appear terms containing up to the third derivative of the grid 
co-ordinates). This is not the case with the present formulation. 

I t  is well known that upwind differencing gives rise to numerical diffusion. For polar co- 
ordinates, or curved grids in general, another type of error occurs and becomes particularly 
serious when the flow is not aligned with the grid lines. Even if the magnitude of the velocity 
component is well approximated by estimating the face value of I ) ,  (for example) with its node 
value, the direction of L;, is not. This was recognized by Galphin et a/.,'* who suggested the 
introduction of a correction velocity, weighted with a factor o (0 < w < I )  depending on the 
curvature of the flow relative to the grid (cylindrical polar grid). The value ofw is zero if the flow is 
aligned with the grid. 

In the present work this problem is, in our opinion, solved in a more general and straightfor- 
ward way. The velocity vectors vnb (nb = neighbour) are projected in the direction of the velocity 
component at the control volume p. This means that all the neighbours cinb (prime denotes 
projected velocity) of ulP  have the same direction. In this way a solution is found to the problem of 
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estimating a face value of u I  having an incorrect direction. The same is true of the u2- and 
v,-equations. 

4. EXAMPLES OF TEST PROBLEMS 

A number of test cases have been calculated where the exact solutions are known, such as rotating 
Couette flow, Jeffery-Hamel flow and other cases where measurements are available for com- 
parison, and the code was shown to produce accurate  result^.'^*^^ Two examples are shown 
here. 

4.1. UniformJlow using a cylindrical mesh 

This test case, which is taken from Galphin et al.," has been chosen in order to estimate how 
much better results can be obtained if the curvature effects are included by projecting the 
velocities rather than using curvature source terms. 

The configuration with the grid is shown in Figure 2. Since we want to estimate the errors for 
upwind differencing, the viscosity is set to zero. The density is constant and the boundary 
conditions are 

v2 = v r =  Ucosu, v1 = 0 4 =  - Usinu, 

which also, together with p = 0, is the exact solution. 
The flow has been calculated with the standard treatment of curvature terms and with the 

procedure of projecting the velocities. The maximal error in the calculated velocities is 8 5 %  and 
0.5% of U for the two cases respectively. In Figure 3 the contours of the pressure are presented. 

Figure 2. Configuration with grid 

- 0 . 1  -0.2 

Figure 3. Contours of isobars. Numbers denote pressure scaled with dynamic pressure, p U 2 / 2 .  (a) Non-projected 
velocities. (b) Projected velocities 
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4.2. Flow inside a channel with a smooth expansion 

Napolitano and Orlandi*' reported on the outcome of a workshop of the International 
Association for Hydraulic Research Working Group on Refined Modelling of Flows. Fifteen 
participating groups returned results on a test case dealing with flow in a plane channel; see 
Figure 4(a). The lower boundary (solid wall) of the channel is given by 

y ,  = Ctanh(2 - 30x/Re)- tanh(2)]/2 

for 0 d x < x,,~ = Re/3. The upper boundary (symmetry plane) is located at y ,  = 1. 

as 
The inlet boundary conditions are given in terms of the Cartesian velocity components u and u 

Symmetry plane y,(x)=l (Re/3,1) 
~ 

4- aJ 
d 

for x = 0,O I y I 1. 
u = 3(y - y 2 / 2 )  
u = o  

At the wall the no-slip condition is used, and symmetry is enforced at 0 I x I xout, y = y,. We 
specified the outlet boundary conditions as zero gradient in the x-direction for u1 and u 2 .  A mesh 

Wall of the channel (Re/3,y,(Re/3)) 

(b) 

Figure 4. (a) Configuration. (b) Grid. 
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- 0 . 4  

of 21 x 21 grid points was used. Figure 4(b) shows our particular grid. Two flows were selected as 
test cases at the workshop, Re = 10 and Re = 100. The former was chosen because of its rather 
distorted geometry and the latter to assess the dependence of the convergence rate on Re. We 
have studied the flow at Re = 10. The results are also presented as pressure and vorticity 
distributions along the wall; see Figures 5 and 6. The reference curve is taken from a finite element 
calculation where the solution was made grid-independent. The pressure has a singular point at 
the inlet. This is because fully developed Poiseuille flow conditions have been prescribed at the 
inlet, in spite of the non-zero slope of the wall at x = 0. 

- 

I ,  1 1 I I 

Figure 5. Pressure distributions at the wall: *, present calculation; solid line, reference calculation’’ 

I I I I I 
0 . 0  0 . 2  0 .4  0 . 6  0 .8  1 . o  

x /  x o u  t I e t 

Figure 6. Vorticity distributions at the wall: *, present calculation; solid line, reference calculationz1 
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5. CONCLUSIONS 

This paper has presented the mathematical derivation of a novel formulation where a local co- 
ordinate system is set up at each point P. This means that most of the terms vanish due to 
curvature and/or divergence/convergence of the grid lines, so that the momentum equations can 
be formulated in a simpler way and probably also more accurately. 

It has been shown that when using upwind differencing the present formulation is more 
accurate than the conventional formulation when the flow is not aligned with the grid lines in a 
curved grid. This is due to the fact that even if the magnitude is well approximated, the direction of 
the velocity component is not. Since in the present formulation the direction of the velocity 
components does not change, this problem does not arise. 

A code has been developed and was applied here to two laminar test cases. No stability 
problems or convergence problems have been encountered. Relaxations of typically 0 5  on the 
momentum equations have been used. 

The standard k--E turbulence model has recently been implemented in the code and some 
calculations have been performed.20 More details on the code are available in Reference 19. In the 
near future we plan to extend the code to cover three-dimensional geometries as well. 

APPENDIX 

Integration of a vector field 

using the Gauss theorem:I4 
Let B be a tensor of second rank of mixed variance. This can be integrated over a volume V 

r r 

Bi,jgid V= B{njgidS. 
J S  

The curvature effects are now (on the RHS of the equation) accounted for through the variation of 
the contravariant base vectors over the area S; if they are constant, these effects will vanish. 

It may be noted that if the contravariant base vectors do not change, then this is valid for the 
covariant base vectors as well, owing to the relation12 

g'.g. = 6i.. 
1 1  

The grid 

A grid is shown in Figure 1. The crosses define the corners of the scalar control volumes and the 
circles define the scalar nodes. The position of a scalar node is defined as the average of its four 
cell corners. The lines which connect these nodes (dotted lines in Figure 1) define the direction of 
the base vectors (see below). 

The v,-control volume is staggered in the positive x'-direction; it is outlined with dashed lines 
in Figure 1. Its east face, for example, is defined as being midway between the east faces of scalar 
control volumes P and E. 

Change of base vectors - _)A__- 

PE( =(gl),), WP, E(EE), N(NE), S(SE), etc. (see Figure I) define the directions of the covariant 
unit base vectors gi. The dashed arrows show the (g,),,-vectors changed so that they are parallel 
(or rather, equal) to the (g,),-vector; the dashed arrows can also be said to be the (g,),-vector 
moved to the positions of the (g,),,-vectors. 
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When the (g,),,-vectors are assumed to be equal to (gl)p, they must, apart from being parallel, 
also be of equal length. All base vectors are, however, of equal length, since the xi-co-ordinates are 
chosen in physical units. 

Formulae for the metric tensor 9‘’ 

control volume in Figure 1 is13 
Since the grid is locally rectilinear, the formula for the metric tensor g’ j  for the o,-velocity 

where c1 denotes the angle between 
tensor g i j  and has the form 

and s, and g is the determinant of the covariant metric 

g = 1 - cos2 Lx. 
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